2. MBConv Usage
# 2. MBConv Usage
# 2.1. Paper
"Efficientnet: Rethinking model scaling for convolutional neural networks" (opens new window)
# 2.2. Overview

# 2.3. Usage Code
from model.conv.MBConv import MBConvBlock
import torch
from torch import nn
from torch.nn import functional as F
input=torch.randn(1,3,224,224)
mbconv=MBConvBlock(ksize=3,input_filters=3,output_filters=512,image_size=224)
out=mbconv(input)
print(out.shape)